
Journal of Sound and <ibration (2002) 256(5), 941}954
doi:10.1006/jsvi.5027, available online at http://www.idealibrary.com on
APPROXIMATE TRANSMISSION EQUIVALENCE OF
ELASTIC BAR TRANSITIONS UNDER 3-D CONDITIONS

B. LUNDBERG

¹he As ngstro(m ¸aboratory, ;ppsala ;niversity, Box 534, SE-751 21 ;ppsala, Sweden.
E-mail: bengt.lundberg@angstrom.uu.se

AND

M. OKROUHLIK

Institute of ¹hermomechanics, Dolejskova 5, CZ-182 00 Prague, Czech Republic. E-mail: ok@it.cas.cz

(Received 25 June 2001, and in ,nal form 7 December 2001)

Transmission of quasi-longitudinal elastic waves through elastic bar transitions between
uniform and collinear bar segments is studied by means of three-dimensional (3-D) "nite
element analysis. The aim is to examine, through an example, to what extent two
geometrically di!erent transitions which are transmission-equivalent in a one-dimensional
(1-D) context may retain this property under 3-D conditions. The di!erence between the two
transitions is assessed from the di!erence between 3-D results for re#ected waves, while the
presence of 3-D e!ects is judged from the di!erence between 3-D "nite element and 1-D
analytical results for transmitted waves. It is found that two smooth and signi"cantly
di!erent elastic bar transitions which are transmission-equivalent in a 1-D context may retain
this property with good approximation under signi"cantly 3-D conditions, well beyond
those under which 1-D theory can be used for prediction of wave shapes. This extends the
domain of potential applications in areas such as percussive drilling correspondingly.

� 2002 Elsevier Science Ltd. All rights reserved.
1. INTRODUCTION

The ability of elastic waves to transport and deliver energy has important applications in
engineering. In percussive drilling of rock [1], for example, this ability is used to transmit
energy through a drill string to a drill bit which converts a substantial part of the wave
energy into work when it crushes the rock. Normally, there are changes in cross-sectional
area along the drill string, corresponding to transitions in characteristic impedance, which
may signi"cantly a!ect the transmission as well as the conversion of energy.

A quasi-longitudinal elastic wave travelling through a straight and uniform segment of an
elastic bar is transmitted without reduction of its energy due to re#ection. If the dominating
wavelengths are long compared with the lateral dimensions of the bar, so that approximate
one-dimensional (1-D) conditions prevail, the wave is also transmitted without signi"cant
distortion of its shape due to dispersion [2]. When, in contrast, a wave is transmitted from
one uniform segment of a bar to another through a transition with changing material or
lateral dimensions, re#ection normally occurs so that the wave is transmitted with
a reduction of its energy and a change of its length and shape. In engineering
applications, such changes may have signi"cant e!ects on e$ciencies and other measures
of performance.
0022-460X/02/$35.00 � 2002 Elsevier Science Ltd. All rights reserved.
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There has long been interest in the transmission of waves through elastic bar transitions
[3, 4] and in maximizing e$ciency of energy transmission by optimizing either the shape of
the incident wave [5] or that of the transition itself [6}8]. Interest has also been devoted to
similar problems for viscoelastic bar transitions [9, 10].

This paper deals with the transmission of quasi-longitudinal elastic waves through
transitions between uniform and collinear bar segments with given characteristic
impedances.More speci"cally, the interest concerns bar transitions made of the same elastic
material which are signi"cantly di!erent from each other in terms of geometry, mass and
re#ection properties but yet have the same or approximately the same transmission
properties. For the same arbitrary incident wave, such transitions produce transmitted
waves which are the same, or approximately the same. This means, for example, that
corresponding stress components associated with two such transmitted waves, and their
distributions in space and time, should be the same or approximately the same.

In a 1-D context, there generally exist transitions which are transmission equivalent, in an
exact sense, to a given transition [4]. For a given transition which consists of a "nite
number N of segments with constant characteristic impedances and equal transit times,
there are at most 2� such transitions, including the one given. They can be obtained
systematically through inversion in the unit circle of zeroes of a polynomial of degree N
[4, 11], which characterizes the given transition. One of these transitions, which
corresponds to the inversion of all such zeroes, can also be constructed through combined
inversion and reversion of the characteristic impedance function of the given transition. For
equal input and output characteristic impedances, two of the transmission-equivalent
transitions can also be obtained by inversion alone or, due to reciprocity [12}14], by
reversion alone. It should be noted that although two transmission-equivalent transitions
with di!erent distributions of characteristic impedance have the same transmission
properties, they do not have the same re#ection properties.

In exceptional cases it may occur that a given transition does not have any
transmission-equivalent transition di!erent from itself. This is the situation for a transition
which is optimal in the sense that it maximizes the energy transmission for some incident
wave. Such a transition has all zeroes of its characteristic polynomial on the unit circle, and
therefore inversions of zeroes or corresponding transformations of the characteristic
impedance function, do not produce new transitions [4].

The existence, in general, of bar transitions which are transmission equivalent to one
which is given has potential use in engineering applications such as percussive drilling of
rock. For example, it may be interesting to redesign a bar transition in order to reduce its
mass, increase its strength or simplify its production without changing its transmission
properties. An attractive way to do this would be to make a suitable choice among all bar
transitions which have the same transmission properties as the original one.

The aim of this paper is to examine, through an example, to what extent two
geometrically di!erent bar transitions which are transmission equivalent in a 1-D context
may retain this property under three-dimensional (3-D) conditions. The "rst bar transition
to be considered will have conical shape and a corresponding distribution of its
characteristic impedance. The shape of the second will correspond to a characteristic
impedance function which results from combined inversion and reversion of that of the "rst.

In section 2, the 1-D distribution of axial stress in the output segments of the two bars will
be determined for a given input. As transmission equivalence is exact in the 1-D context, it
will su$ce to consider the bar with a conical transition. In section 3, axisymmetric "nite
element analyses will be carried out in order to obtain the corresponding 3-D distributions
of axial normal stress on the axes and surfaces of the two bars. In sections 4 and 5, the
di!erence between the two bar transitions will be assessed from the di!erence between the



Figure 1. Transmission-equivalent pair of elastic bar transitions with variable characteristic impedances Z
�
(�)

and Z
�
(�) between input and output bar segments with constant characteristic impedances Z

��
and Z

���
. The

characteristic impedance Z
�
(�) is obtained through combined inversion and reversion of the characteristic

impedance function Z
�
(�).
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3-D results for re#ected waves, while the presence of 3-D e!ects will be judged from the
di!erence between the 3-D "nite element and the 1-D analytical results for transmitted
waves. Finally, comparison of the 3-D results for transmitted waves will show to what
extent the property of transmission equivalence in a 1-D context is retained under 3-D
conditions.

2. ONE-DIMENSIONAL ANALYSIS

Consider propagation of quasi-longitudinal elastic waves under 1-D conditions in
a straight bar with cross-sectional area A, Young's modulus E and density �. Generally,
these quantities, the wave speed c"(E/�)��� and the characteristic impedance Z"AE/c
may depend on the axial co-ordinate x. With the introduction of the characteristic
impedance function Z(�), where �"��

�
ds/c(s) is a transformed axial co-ordinate which

expresses the travel time from the origin to x, the propagation of waves in the bar is
modelled by the relations

�N
��
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�t

,
�v
��

"
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Z

�N
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, (1)

which originate from the equation of axial motion and Hooke's law respectively. In these
relations, N(�, t)"Z�u/�� is the normal force, v(�, t)"�u/�t is the particle velocity and
u(�, t) is the displacement, positive in the direction of increasing �. In what follows, it will be
assumed that Young's modulus E and the density � are constant, so that variations in the
characteristic impedance Z(�) are due entirely to corresponding variations in the cross-
sectional area A(�).

Let the input segment �(0 of the bar have the constant characteristic impedance
Z(�)"Z

��
, and let the output segment �'d have the constant characteristic impedance

Z(�)"Z
���

as shown in Figure 1. Then, equations (1) result in the wave equation for
N and v in these parts of the bar, and the distributions of normal force and particle velocity
become
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in the input segment and

N(�, t)"N
�
(t!�), v(�, t)"

1

Z
���

N
�
(t!�) (3)

in the output segment. The functionsN
�
(t),N

	
(t) andN

�
(t) represent the incident, re#ected

and transmitted waves, respectively, and use has been made of the circumstance that there is
no wave incident on the transition from the right. The corresponding distributions of
normal stress can be obtained as �"N/A

��
and N/A

���
respectively.

Furthermore, let one transition 0)�)d, labelled A, be conical and have the
characteristic impedance

Z
�
(�)"C(a#�)�, (4)

where C and a are parameters such that Z
�
(0)"Z

��
and Z

�
(d)"Z

���
. Corresponding to

this transition, there is another transition, labelled B, with characteristic impedance

Z
�
(�)"Z

��
Z

���
/C(a#d!�)� (5)

and transmission properties identical to those of transition A [4, 12]. This transition is
obtained through combined inversion (replacement of Z

�
(�) by Z

��
Z

���
/Z

�
(�)) and

reversion (replacement of Z
�
(�) byZ

�
(d!�)) of the characteristic impedance function (4) of

transition A, that is, through the transformation Z
�
(�)"Z

��
Z

���
/Z

�
(d!�). Similar to

transition A, transition B has the properties Z
�
(0)"Z

��
and Z

�
(d)"Z

���
. Otherwise, the

two transitions are di!erent provided that Z
��

OZ
���

. They are illustrated in Figure 1.
Next, the aim is to determine, for both transitions, the transmitted wave produced by

a given incident wave. As the transmission properties of the two transitions are identical, it
will be su$cient to consider transition A in what follows. For this transition, equations (1)
and (4) give the wave equation for the product (a#�)v(�, t). From its solution, the
distributions of normal force and particle velocity in the transition are obtained as

N(�, t)"
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Z
�
(�)

(a#�)�
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1
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where p and n are functions which represent waves travelling in the directions of increasing
and decreasing � respectively. The prime symbol indicates di!erentiation with respect to the
arguments t$� of these functions.

Equations (2), (3) and (6), and the requirement of continuity of normal force and particle
velocity at the ends of the transition, provide a system of four di!erence}di!erential
equations which relate the four unknown functions p(t), n(t), N

	
(t) and N

�
(t). From this

system, and the requirement that the functions p(t) and n(t) be continuous with p(t)"0 for
t(0 and n(t)"0 for t(2d, the unknown functions can be determined successively in the
intervals 0)t(2d, 2d)t(4d,2 . For t(0, these functions are zero.

The incident wave is de"ned by the rectangular compressive pulse

N
�
(t)"!N

�
[H(t)!H(t!�)], (7)

where N
�
is the amplitude, � is the duration and H(t) is Heaviside's unit step function. The

front of the wave arrives at the input end of the transition at time t"0. As only relatively
short incident pulses with �)2d are of interest, it is su$cient to determineN

	
(t) andN

�
(t)



Figure 2. Transmission-equivalent pair of elastic bar transitions A and B between pressure-loaded input bar
segment with diameter D

��
and free-ended output bar segment with diameter D

���
. The shape of B is obtained

through combined inversion and reversion of the characteristic impedance function of A.
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in the interval 0)t(2d. The result is
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Although transitions A and B have the same transmission properties, they do not have
the same re#ection properties. Therefore, while the transmitted wave de"ned by equations
(9) is valid for both transitions A and B, the re#ected wave de"ned by equations (8) is valid
for transition A only. It is also noted that r is equal to the diameter ratio D

���
/D

��
if the

material is the same in the input and output segments.

3. THREE-DIMENSIONAL ANALYSIS

3.1. GEOMETRY, MATERIAL AND LOAD

Bars A and B shown in Figure 2 were considered for the 3-D "nite element analysis. They
have circular cross-sections, input diameter 2R

��
"D

��
"20 mm, output diameter

2R
���

"D
���

"3D
��

"60 mm, length of transition ¸
�	

"5D
��

"100 mm and total
length ¸"10¸

�	
"1000 mm. The material is steel with the Poisson ratio 
"0)3, Young's

modulus E"210 GPa, density �"7800 kg/m� and 1-D wave speed c"(E/�)���"

5189 m/s.
The ends of the input segments are located at xN "0, the transitions at 0.3¸)xN )0.4¸,

and the ends of the output segments at xN "¸. Here, xN is an axial co-ordinate which is
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related to those introduced previously through xN "0)3¸#x"0)3¸#c�. Transition A is
conical with radius R

�
(x), while B has a radius R

�
(x) which approximates

R
��
R

���
/R

�
(0)1¸!x) with a piece-wise linear function. The approximation is such that

equality prevails at "ve (coarse mesh) or seven ("ne mesh) equidistant points, including the
ends of the transition.

The input ends of the bars are loaded with a rectangular pressure pulse p(tM ) with duration
�"0)5d, d and 2d, and amplitude �

�
"N

�
/A

��
"405 MPa as shown in Figure 2, while the

output ends are free. Here d"¸
�	

/c"0)1¸/c is the transit time for a 1-D wave through the
transitions. The time tM is shifted relative to t so that tM "3d#t.

3.2. DIMENSIONLESS PARAMETERS AND VARIABLES

The signi"cant parameters of the problem are the dimensionless ones which de"ne the
shape of the transitions (D

���
/D

��
"3 and ¸

�	
/D

��
"5), the material (
"0)3) and the

duration of the pressure pulse relative to the transit time through the transition (�/d"0)5,
1 and 2). The dimensional input parameters for the "nite element analyses given above are
used for convenience. The ratio ¸/¸

�	
"10 is slightly larger than that needed to prevent

re#ected waves from the bar ends from overlapping the transmitted wave during the period
of time 0)t)5)33d considered. Otherwise, this parameter is not signi"cant.

As the problem considered is linear, the axial normal stress in the bar � is directly
proportional to the amplitude �

�
of the applied pressure and thus �/�

�
is independent of �

�
.

Therefore, the results of the analyses will be presented as dimensionless axial normal stress
�/�

�
versus dimensionless position �/d at a "x dimensionless time t/d.

The above choice of dimensionless parameters has been made with the purpose that (i)
the bar transitions A and B should be signi"cantly di!erent from each other and (ii) 3-D
e!ects should be important. It can be shown that in terms of these parameters the ratio of
the masses of these transitions is

M
�
/M

�
"(D

���
/D

��
#1#D

��
/D

���
)/3, (11)

which gives M
�
/M

�
"1)44. Thus, the mass of transition A is 44% larger than that of

transition B. The signi"cance of 3-D e!ects can be assessed in terms of the ratio of pulse
length to output diameter, which is estimated to be of the order of unity for the shortest
pressure pulse. Therefore, the dominating wavelengths are comparable with the transverse
dimensions of the bars and 3-D e!ects are expected to be signi"cant [2].

3.3. FINITE ELEMENT ANALYSIS

Marc, a general-purpose "nite element code from MSC Software Corporation, was
employed for the 3-D "nite element analysis, and pre- and post-processing were carried out
with Matlab. A four-node axisymmetric element with a fully integrated bilinear shape
function was used to obtain the sti!ness and mass matrices. Consistent mass matrix
formulation together with the implicit Newmark time operator with �

���
���
"0)5 (no

numerical damping) were employed. With this choice [15, 16], the dispersive errors due to
the time and space discretization are of opposite signs. Spatial discretization side e!ects
were reduced also by using a nearly uniform mesh.

In order to capture high-frequency components of the rectangular input pulse, use was
made of a time step h, corresponding to the highest frequency of the "nite element structure.
A suitable time step was estimated by relating it to the time t

���
"l

���
/c� needed for a wave



Figure 3. Finite element meshes for bars with transmission-equivalent pair of transitions A and B.
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front to pass through a characteristic length l
���

of the smallest element of the structure
with a characteristic wave speed c�. Here, c�"c"(E/�)��� was a natural choice. In this way,
the time step h"t

���
/2 was found to provide a suitable trade-o! between minimization of

time dispersion errors and demand of CPU time.
Space discretization considerations demand at least "ve elements within a wavelength in

order that a harmonic be captured with an error less than 1%. Requirement to register
frequencies up to at least 1 MHz and wave speed of about 5000 m/s led to an element size of
the order of 1 mm, see references [16, 17].

Two "nite element meshes were used for each transition, one "ne and one coarse. The "ne
meshes involved 600 elements axially and nine elements axially throughout the bars, that is,
altogether 5400 elements. With this choice, the elements in the input segment were
rectangular with axial and radial dimensions 1)67 and 1)11 mm, respectively, while those in
the output segment were rectangular with length 1)67 mm and height 3)33 mm. The coarse
meshes, involving 2700 elements, were obtained by reducing to half the number of elements
axially. The transition parts of the "ne meshes are illustrated in Figure 3.

4. RESULTS

The in#uence of mesh size on the 3-D distribution of axial normal stress at time t"5)33d
is shown in Figure 4 for the bar with transition A and in Figure 5 for that with transition B.
In both cases, the incident wave is generated by a rectangular pressure pulse with duration
�"0)5d.

The 3-D distributions of axial normal stress at time t"5)33d on the surfaces and on the
axes of the two bars, one with transition A and one with transition B, are shown in Figure 6.
The corresponding 1-D distribution of normal stress in the output segments of the two bars,
exactly the same for transitions A and B, is also shown. In both cases, the incident wave is
generated by a rectangular pressure pulse with duration �"0)5d, and use is made of the "ne
mesh. Corresponding results obtained with the coarse mesh are shown in Figure 7 for �"d
and in Figure 8 for �"2d.

5. DISCUSSION

At time t"5)33d, which corresponds to the stress distributions shown in Figures 4}8, the
fronts of the 1-D transmitted waves have reached �"5)33d in the output segments, while



Figure 4. 3-D distribution of axial normal stress at time t"5.33d in bar with transition A for "ne (thin curve)
and coarse (thick curve) meshes. Ends of transition indicated by vertical lines. Duration of input pressure pulse
�"0)5d. (a) Surface. (b) Axis.
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Figure 5. 3-D distribution of axial normal stress at time t"5.33d in bar with transition B for "ne (thin curve)
and coarse (thick curve) meshes. Ends of transition indicated by vertical lines. Duration of input pressure pulse
�"0)5d. (a) Surface. (b) Axis.
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Figure 6. 3-D and 1-D distributions of axial normal stress at time t"5)33d in bars with transitions A and B.
Ends of transition indicated by vertical lines. Duration of input pressure pulse �"0)5d. Fine mesh. (a) Surface.
(b) Axis.
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Figure 7. 3-D and 1-D distributions of axial normal stress at time t"5.33d in bars with transitions A and B.
Ends of transition indicated by vertical lines. Duration of input pressure pulse �"d. Coarse mesh. (a) Surface.
(b) Axis.
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Figure 8. 3-D and 1-D distributions of axial normal stress at time t"5.33d in bars with transitions A and B.
Ends of transition indicated by vertical lines. Duration of input pressure pulse �"2d. Coarse mesh. (a) Surface.
(b) Axis.
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the leading parts of the 3-D transmitted waves have propagated to �+6d, thus without
reaching the free output ends �"7d. At this time, the fronts of the 1-D re#ected waves have
"rst undergone free-end re#ection with sign reversal at the input ends �"!3d and then
advanced to �"!0)67d in the input segments. The leading parts of the doubly re#ected
3-D waves have propagated to the proximity of the input end �+0 of the transition.
Figures 6}8 also show the leading parts of the 1-D transmitted waves. In the input segments,
Figures 4}8 show the doubly re#ected 3-D waves overlapped by the tails of the primary
re#ected waves.

Figures 4(a)}8(a) show that on the bar surfaces, the 3-D stress distributions are relatively
smooth within the leading parts of the re#ected and transmitted waves, while within the
transitions and the tails of the transmitted waves, they are oscillatory. Figures 4(b)}8(b)
show that on the bar axes, the oscillatory character of the stress distributions is more
pronounced, especially for the shortest incident wave. This di!erence in behaviour, on the
surface and on the axis, is believed to be explained by the increase in e!ective axial sti!ness
of the material near the axis due to the con"nement by the surrounding material.

Figures 4 and 5 show, for the incident wave with duration �"0)5d, that there is a very
good agreement between the results obtained with the "ne and the coarse meshes where the
stress distributions are smooth, that is, on the bar surfaces along the leading main parts of
the re#ected and transmitted waves. On the axes, along these parts of the waves, there is
a good general agreement between the results obtained with the twomeshes. The di!erences
in details are associated with the high-frequency oscillations on the axes. These di!erences
are mainly due to the richer presence of high frequencies with the "ner mesh. Along the tails
of the transmitted waves, and within the transitions, there are oscillations on the bar
surfaces and axes with wavelength +0)37D

���
. These oscillations with relatively high

frequency behind the main transmitted waves are believed to be due to dispersion of
geometrical as well as numerical origin. This explains the phase di!erences between the
oscillations along the tails for the two meshes. For the leading main parts of the re#ected
and transmitted waves, and for the purpose here, the results obtained with both meshes are
considered to be satisfactory.

Figure 6 shows, for �"0)5d, that the leading parts of the 3-D waves transmitted through
transitions A and B are in excellent agreement on the surfaces and in good agreement on the
axes over a length of about 3d"6�. In the tail behind, there is a fair agreement apart from
the phase discrepancies. Similar remarks are valid for the results shown in Figures 7 and 8,
which were obtained for incident waves with �"d and 2d, respectively. Altogether, Figures 6}8
show that transitions A and B are transmission equivalent with good approximation.
This result is signi"cant as conditions had been chosen such that (i) these transitions
are signi"cantly di!erent from each other and (ii) 3-D e!ects are signi"cant (if
transitions A and B were nearly the same or conditions were nearly 1-D, the result would
have been trivial).

The signi"cant di!erence between the two bar transitions is con"rmed by the
distributions of stress in the input segments in Figures 6}8 which show that transitions
A and B have signi"cantly di!erent re#ection properties. The signi"cance of 3-D e!ects is
also con"rmed in the same "gures in two di!erent ways. Firstly, there is a pronounced
disagreement between the 3-D and the 1-D waves transmitted through either transition
A or B (a disagreement which was aimed at). Secondly, there is a clear di!erence between the
3-D stress distributions on the surface and on the axis which does not exist in the 1-D
context.

It is concluded that smooth and signi"cantly di!erent elastic bar transitions which are
transmission equivalent in a 1-D context may retain this property with good approximation
under 3-D conditions, well beyond those under which 1-D theory can be used for prediction
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of wave shapes. This extends the domain of potential applications in areas such as
percussive drilling correspondingly.
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